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Abstract 

Poly(ADP-ribose) polymerase responds to DNA strand breaks in nuclei by producing ADP-ribose polymers 
covalently attached to proteins. Here we report two fast protein liquid chromatographic applications to aid 
investigations on poly(ADP-ribosyl)ation. The first rapidly purifies poly(ADP-ribose) polymerase from crude calf 
thymus extract. The purification protocol, involving successive fractionations over four columns, reduces the time 
for polymerase purification from four days to 14 h resulting in a > 50% increase in enzyme-specific activity. The 
second application employs a complex salt gradient to reproducibly separate ADP-ribose polymers into individual 
size classes. 

1. Introduction 

Poly(ADP-ribosy1)ation is required for repair 
of DNA breaks in higher eukaryotes [l-3]. 
Poly(ADP-ribose) polymerase (EC 2.4.2.30) is 
dependent on DNA strand breaks for activation 
[4], and activation in turn leads to modification 
of polymerase molecules with long polymers of 
ADP-ribose (automodification). Through non- 
covalent interactions with histones [5-71, these 
polymers disrupt DNA-histone complexes mak- 
ing the DNA accessible to DNA processing 
enzymes [8,9]. Degradation of ADP-ribose 
polymers by poly(ADP-ribose) glycohydrolase 
restores the integrity of the DNA-histone com- 
plex. Polymer size and structure play an im- 
portant role in this histone shuttle mechanism, 
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influencing both polymer affinity for chromatinic 
proteins [6] and polymer degradation kinetics 
[lO,ll]. We therefore found it necessary to 
prepare ADP-ribose polymers of distinct sizes to 
further elucidate the histone shuttle of chro- 
matin. 

We have established two fast protein liquid 
chromatographic (FPLC; Pharmacia) applica- 
tions to aid our investigations. (1) Because 
purification of poly(ADP-ribose) polymerase 
requires successive fractionation of a calf thymus 
crude extract over four different chromatography 
resins [12-141, conventional chromatography 
techniques take at least four days before the 
pure enzyme is obtained. Strategic programming 
and continuous flow from column to column 
using FPLC reduced purification time to 14 h 
thereby yielding more active enzyme faster. (2) 
Separation of ADP-ribose polymers into indi- 
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vidual size classes has recently been achieved 
using HPLC [15]. We have found that high- 
resolution separation of polymers by FPLC using 
a MonoQ column is highly reproducible and can 
process large quantities of polymers with re- 
coveries of 98 t 1%. 

2. Materials and methods 

2.1. Poly(ADP-ribose) polymerase purification 

Preparation of calf thymus crude extract 
Frozen calf thymus (50 g) was homogenized in 

250 ml of 50 mM Tris, 0.3 M NaCl, 10% 
glycerol, 10 mM /3-mercaptoethanol (P-ME), 50 
mM Na,S,O,, pH 8.0. After centrifugation at 
12 000 g for 15 min at 4”C, the supernatant was 
precipitated with 30% (NH,),SO,, centrifuged, 

and reprecipitated with 70% (NH,)*SO,. The 
resulting pellet was resuspended in 10 ml basis 
buffer (100 mM Tris-HCl, 17% glycerol, 25 mM 
K,S,O,~ 12 mM P-ME, 0.5 mM EDTA) and 
loaded into a 50-ml Superloop (Pharmacia). 

Columns and FPLC configuration 
DNA-cellulose (Pharmacia) was nicked [16] 

and packed in an HR lo/30 column (Phar- 
macia). 3-Aminobenzamide was cross-linked to 
AffiGel 10 (Bio-Rad) and packed in an HR 
lo/30 column. A 0.2-ml volume of hydroxy- 
apatite (HTP Bio-Gel; Bio-Rad) was prepared 
fresh for each purification and packed in a lo-ml 
EconoColumn (Rio-Rad). FPLC (with LCC-500 
Plus controller; Pharmacia) connections to col- 
umns. valves and buffers are schematically 
shown in Fig. 1. The system was run at 4°C; the 
flow-rate was maintained at 0.4 mlimin. For 

Fig. 1. Schematic diagram of FPLC system for purification of poly(ADP-ribose) polymerase. Purification of poly(ADP-ribose) 

polymerase from calf thymus crude extract requires successive fractionation over Sephadex G-25. DNA-cellulose, 3-amino- 

benzamide-AffiGel and hydroxyapatite columns. Using the basic FPLC system with strategic programming of the valves (l-6), 
the time needed for polymerase purification was reduced from four days to 14 11. 3-meBz = .i-Methoxybenzamide. 
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further details, a copy of the run program is 
available on request. 

Enzyme activity assay 
The specific activity of poly(ADP-ribose) 

polymerase was calculated from the amount of 
NAD’-derived ADP-ribose incorporated into 
acid-precipitable material. A lo-~1 volume of the 
solution to be assayed was added to 50 mM Tris 
(pH 8.0), 1 mM dithiothreitol, 10 mM MgCl,, 2 
pg nicked calf thymus DNA [16], 2 pg Hl 
(Boehringer Mannheim) and 10 PM [3H]NAD+ 
(45 Ci/mol; New England Nuclear) in a final 
volume of 100 ~1. After incubation at 25°C for 
10 min, samples were precipitated with 20% 
trichloroacetic acid, applied to glass fiber filters, 
washed with 5% trichloroacetic acid, and 
counted for radioactivity. 

2.2. Separation of ADP-ribose polymers 

Polymer synthesis and purification 
Protein-attached polymers of [32P]ADP-ri- 

bose .were synthesized in a 9-ml reaction mix 
containing 3 mg of crude poly(ADP-ribose) 
polymerase (430 pmol/min mg), 50 mM Tris 
(pH 8.0), 1 mM dithiothreitol, 10 mM MgCl,, 
100 pg nicked calf thymus DNA [16], 225 pg 
Hl. 9.6% ethanol and 1 mM [32P]NAD+ (10 
Ci/mol; New England Nuclear). After 30 min at 
25°C protein-attached polymers were precipi- 
tated with 20% trichloroacetic acid, dissolved in 
98% formic acid, and reprecipitated with tri- 
chloroacetic acid. 

Each pellet was resuspended in 1 ml of 1 M 
KOH/50 mM EDTA and incubated at 37°C for 
2 h to detach [32P]poly(ADP-ribose) from pro- 
tein. Conditions were adjusted to pH 8 and 50 
mM MgCl, whereupon DNA was digested with 
1000 U of DNase I (Sigma) for 2 h at 37°C. 
Proteins were subsequently digested with 200 U 
of proteinase K (Boehringer Mannheim) at 37°C 
overnight. After extraction with an equal volume 
of phenol-CHCl,-isoamyl alcohol (49:49:2), 
[32P]poly(ADP-ribose) was precipitated with 
ethanol and dried in a Speed-Vat concentrator. 
The polymers of [32P]ADP-ribose were dis- 
solved in water and stored at -20°C. 

Columns and FPLC configuration 
A l-ml MonoQ column (Pharmacia) was used 

at a flow-rate of 0.4 ml/min; 0.4-ml fractions 
were collected. Gradient buffer A contained 20 
mM Tris, pH 8.3, and buffer B consisted of 1 M 
KC1 in buffer A. The system was run at 4°C. 

High-resolution size analysis of polymers 
Fractions from FPLC separation were counted 

for 32P content. Aliquots containing 100 dpm 
from each peak fraction were dried, dissolved in 
10 ~1 of loading buffer and separated on a 
polyacrylamide gel as previously described [ 171. 

3. Results and discussion 

Strategic design and programming of FPLC 
and reproducible high resolution from FPLC 
columns have allowed us to not only rapidly 
purify the nuclear enzyme poly(ADP-ribose) 
polymerase but also to resolve its polymeric 
ADP-ribose products. The significant attributes 
of each application are discussed below. 

3.1. Poly(ADP-ribose) polymerase purification 

Purification of poly(ADP-ribose) polymerase 
requires successive fractionation of a crude ex- 
tract over four chromatography resins, three of 
which are affinity resins. Previous purification 
protocols required many technical manipulations 
in a cold room over a period of four days. Using 
FPLC, we have completely automated the col- 
umn chromatography fractionations such that the 
technician need only perform a preparative am- 
monium sulfate precipitation and load the crude 
extract onto the FPLC. The new procedure 
yields pure poly(ADP-ribose) polymerase in 
only 14 h. 

The FPLC setup is schematically shown in Fig. 
1. Notable variations from usual setups include 
the use of a valve (valve 2) for selection of 
elution buffers, a valve before the UV monitor 
(valve 4) to select which eluent to monitor, and 
the use of PSV-100 valves to direct flow to/from 
columns. The FPLC system itself resides in a 
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cold room and is connected serially to the 
computer driver in a nearby office. Once the 
crude extract is loaded onto the FPLC system, 
all FPLC manipulations and monitoring of re- 
sults are done at the computer station. 

After preparation of the crude extract (see 
Materials and methods), the sample containing 
200-300 mg of protein is loaded into the Super- 
loop and the FPLC program initiated. Protein is 
desalted and automatically loaded onto nicked 
DNA-cellulose. Poly(ADP-ribose) polymerase 
binds with high affinity to DNA nicks [IS] and is 
subsequently eluted with a 0.2-l M KC1 linear 
gradient in basis buffer. The polymerase elutes 
in a sharp peak at about 0.8 M KC1 and is 
shunted directly to a 3-aminobenzamide AffiGel 
column. After four column washes, the enzyme 
is competitively eluted from the AffiGel resin 
with basis buffer containing 0.3 M KCl/l mM 
3-methoxybenzamide and is concentrated and 
washed on a 0.2-ml pad of hydroxyapatite. 
Elution of poly(ADP-ribose) polymerase from 
hydroxyapatite is performed manually with two 
250-~1 aliquots of basis buffer containing 0.5 M 
potassium phosphate, pH 7.2. 

A comparison of purification parameters from 
the conventional procedure versus FPLC is given 
in Table 1. While the overall yields are compar- 
able, a 53% increase in enzyme-specific activity 
was obtained using FPLC mainly due to the 
decreased processing time. Like the conventional 
preparation, FPLC-purified 
polymerase contains no 
topoisomerase activity and is 
pure (Fig. 2). 

poly(ADP-ribose) 
detectable DNA 
electrophoretically 

Table 1 

Purification of poly(ADP-ribose) polymerase from calf 

thymus using conventional chromatography versus FPLC 

Conventional FPLC 

chromatography 

Protein (%) recovery 5.2 5.8 

Specific activity (nmolimin mg) 378 578 

Purification (x-fold) 1026 1399 

Fig. 2. Gel analysis of purified poly(ADP-ribose) polymer- 

ase. A l-kg amount of protein prepared by conventional 

chromatography techniques or FPLC was separated on a 

10% sodium dodecyl sulphate-polyacrylamide gel [20] and 
stained with Coommassie Blue. Markers with molecular 

masses (kDa = kilodalton) as indicated were loaded in the 

first and last lanes. 

3.2. Separation of ADP-ribose polymers 

Poly(ADP-ribose) polymerase synthesizes 
polymers of NAD’-derived ADP-ribose, the 
sizes of which respond to the protein environ- 
ment at the time of synthesis [19]. It has been 
difficult to further analyze the specific role of 
discrete polymer sizes since homogeneous poly- 
mer size classes could not be isolated. We have 
overcome this obstacle using FPLC. 

After synthesis and detachment from protein 
(see Materials and methods), 50-100 nmol of 
[32P]ADP-ribose in the form of polymers were 
injected in 0.5 ml of buffer A onto a l-ml 
MonpQ column. The polymers were eluted with 
a KC1 gradient (caption to Fig. 3) and fractions 
collected. A typical elution profile is shown in 
Fig. 3. As polymer size increases. the elution 
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Fig. 3. Separation of ADP-ribose polymers by FPLC. Polymers of ADP-ribose in a total volume of 0.5 ml were injected onto a 

l-ml MonoQ column. Absorbance (solid line) was monitored continuously during elution with a KC1 gradient (broken line). The 

gradient program used was: 0% buffer B at 0 ml, 0% B at 2 ml, 25% B at 16 ml, 40% B at 36 ml, 53% B at 70 ml, 60% B at 80 

ml, and 100% B at 81 ml (see also Materials and methods). 

Fig. 4. Poly(ADP-ribose) size analysis following FPLC separation. A heterogeneous population of [32P]ADP-ribose polymers 

(MARKER) was separated on a l-ml MonoQ column and fractions collected (see Materials and methods). Aliquots containing 

100 dpm of [32P]poly(ADP-ribose) were analyzed on high-resolution polyacrylamide gels and subjected to autoradiography [17]. 

The lengths of the polymers in terms of ADP-ribose residues are indicated to the left and right of the autoradiograph. 
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gradient becomes more shallow to maximize 
resolution. Aliquots from peak fractions were 
analyzed by autoradiography of high-resolution 
polymer gels [17]. Fig. 4 shows that the MonoQ 
resin easily resolved polymers ranging from 2-24 
ADP-ribose units and resolved polymers rang- 
ing from 26-50 ADP-ribose residues by units of 
2-4. In addition, polymers eluting in 1 M KC1 
did not migrate upon electrophoretic analysis 
(not shown) and therefore may represent branch- 
ed polymers [6,15]. Overall recovery of radioac- 
tivity from the MonoQ was always > 90%. 

Recently, Kiehlbauch et al. [15] have reported 
the separation of polymers on a Progel-TSK 
DEAE NPR HPLC column. While separation of 
polymers using HPLC was comparable to FPLC, 
they cited potential problems with reproducibil- 
ity dependent on the HPLC system used. Sup- 
plied as a standard system, FPLC eliminates such 
variabilities. Also unlike HPLC, FPLC lends 
itself to the scale-up of analytical chromatog- 
raphy separations for preparative purposes. The 
MonoQ column used for this study has an ionic 
capacity of 0.27-0.37 mmol which is equivalent 
to 75-100 mg of ADP-ribose. Separation can be 
easily scaled up to a 20-ml column which could 
separate up to 2 g of ADP-ribose polymers. This 
becomes an important aspect for polymer prepa- 
ration when one considers that, in a heteroge- 
neous polymer population, a single size class of 
polymers represents only one of at least 50 size 
classes, and the longer the polymer, the less 
frequent its occurrence [17]. For these reasons, 
we recommend FPLC for the large-scale prepa- 
ration of homogeneous ADP-ribose polymer 
populations as well as for poly(ADP-ribose) 
polymerase purification. 
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